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Differential Equations

7.4 Reasoning Using Slope
Fields

7.2 Verifying Solutions for
Differential Equations

7.3 Sketching Slope Fields

7.5 Approximating Solutions
Using Euler’s Method
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Conditions and Separation
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7.6 Finding General Solutions
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7AIMODELINGSITURTIONSWITHIDIEFERENTIAL'EQUATIONS

Directly Prg@rtional (usually we just say “proportional”)

If a is proportional to b, then a = kb, where k is a constant.

Inversely Proportional (sometimes We say “pmportional to the reciprocal”)

If a is INVERSELY proportional to b,thena = %, where k is a constant.

Differential
(derivative)

Differential equations are

those thathave a differential
(derivative) inan equation! e yox




7AIMODELINGSITURTIONSWITHIDIEFERENTIAL'EQUATIONS

The rate of change of the perceived stimulus p with

respect to the measured intensity 8 of the stimulus is
| to the intensity of the stimulus.

inversely pmng;tiona
reciprocal

hich equation describes this relationship?

ﬂa\e o{- chcmae o(. P Wilth IBSPed \‘08':%

constant
(iﬂ -k & ~ propertionalily
ds™7s N inens ity




7AIMODELINGSITURTIONSWITHIDIEFERENTIAL'EQUATIONS

Each month the balance, B. of Harper's loan increases by ’Encv!?qﬁe & ckcmse

0.22% and decreases by $250.00. e mﬂn\'h . we
are Lokms (or change

Which equation describes this relationship?
. balance with -
yesypect fO monthd 'Y

d%"ow B 48 ¢
ot

increases (cha 9
by 0-22°%e oﬁnge

Rewmem ber, we are
wm Hhe balance, not

\coking
the actual lpalance




TEOWERIEYING{SOLUTIONSJEORIDIEFERENTIAUIEQUATIONS

We can verify solutions to differential equations by
finding the derivative of the solution and plugging in to
the original differential equation.

Remember: Solutions to differential equations are just
functions y = f(x) that satisfy the differential equation
when f and its derivatives are substituted back into the

differential equation.




w3 l X

-ﬁq
e

! 250-x  Jiox
| \0—X
O Find the derivative opy ® Plus o, | +he | \)-
di“erenhg‘ Gbuahm, @ plds in bhe
as it i+ were a solvlion Y

s =\0-x IS not asolution.
Jox | \ A ny

Since _ |
A0«
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7+3{SKETCHINGISLORE FIELDS

Slope fields are a graphical
representation of the solutions to a

differential equation

They are a great tool for visualizing
differentials!

To sketch a slope field, you must sketch o

3 short line segment representing the L

slope (dy/dx) at each point (X, y).




7+3{SKETCHINGISLORE FIELDS

In drawing the slope field for the differential equation Which differential equation generates the slope

b ooy _
d_y = x + 2y — 2, | would place short line segments at field? @ a«*(%'ﬂﬁ Lho o 0

dx
select points on the xy-plane. Oth Q“ S% men 3

that ‘appear along the
ine y=2x. Habng the
Substitvtion that dy. o

when y=2x nto 3
Follcwmg answer choiccs

Complete the sentences.

At the point (—2,0), | would draw a short segment of
Z=-1+20) 4
At the pomt 0 3), | would draw a short segment of

e | dy o -

At the point (1,1), | would draw a short segment of

slope. %Y;‘: |2 2 =\

—_— o e e e s s s s =
- W, N ‘ F o e, e e -
— e W, N ‘j’..—.-

e o o e, e, e, L l F e
— O S O e, e, R, 0w

=z+2y

-=n
- +

o8
dx
® dy
d——2 +y
9
, 0° Qx—-lk
dm
©dy 2
de vy
®dy_ 2
dr vy

- — — — — — — — — ﬂ-
n , - e e

g s e s mae s o
-y, N ' F o s

- — — — — — — —_— — o ==
- — — e e e — oy S
- — o e e e e s s gl
- — — — — — — — —_— - I




You can match slope fields of differential equations to
solutions by tracing out a curve using the slope field as
a guide.

If the question asks you to find the solution curve
passing through a specific point, start at that point and
follow the shape of the slope field on both sides to
sketch the solution curve.
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715]APPRONIMATING/SOLUTIONSIUSING|EULER:S|METHOD

BC ONLY!!!

Euler’

(trust me 1 tried), so here are some links that explain

the concept well: v}

Flipped Math

=]

Khan

s method is rough to explain with a couple slides

Euler approximation

Az A,

Exact function
y=f(0)

Drganic Chemistry Tutor



https://calculus.flippedmath.com/75-approximating-solutions-using-eulerrsquos-method.html
https://www.khanacademy.org/math/ap-calculus-bc/bc-differential-equations-new/bc-7-5/e/euler-s-method
https://www.youtube.com/watch?v=ukNbG7muKho

76 GENERAIESOLUTIONS]USINGISERARATIONOEIVARIRBLES

Separating the variables to different sides in
differential equations allows us to integrate to find a
general solution!

& _ 90

Y _ ) 9y v _ . L L
f;x dc h(y) Separable differential equations
= Y _ f(x) dx dy 9 . .
i & are written in the form:

= _é_zy)_dy= f(x) dx thV)dy= fg(Xde dy 1 dy | f(a:‘)
fo W H@)gw) or g = o




76 GENERAIESOLUTIONS]USINGISERARATIONOEIVARIRBLES

O Separate Hhe 's and \'S by cadon'ng
olve the equation.
S t quati %: \l(gl@_gx)

d
ﬁ = 8z%y — 8zy @Rearronge to move each woriaple toe side

Eij-: (ng- 8)&\0‘2&
@tMeSmle both sides :
gd {280 ax

don‘l farﬂe“C‘

In Qx" Yyt t-C.

\| 2’ ¢, | x4t solve 03‘"9 PfoPﬂ‘hPa? of
N= e Cﬁ ¢ logarithms to bnns \ down
anol properiies of exponenis
o bring the orbilrory @nsont cown

Q+b

Remember: ™ =\
) WES

Xb




ZF7IPARTICULAR/SOLUTIONS{USINGINITIAIXCONDITIONS/AND
SEPARATION[OFVARIABLES

Instead of leaving +C as an arbitrary constant, we
figure out what +C is using initial conditions!

Since our general solution after separation of variables

is already in the formy = f(x) + C, we just have to plug
i1 an initial condition (x, y) and solve for C to get the

solution for that initial condition.




ZF7IPARTICULAR/SOLUTIONS{USINGINITIAIXCONDITIONS/AND
SEPARATION[OFVARIABLES

d_y o 3t2

@separable diterenial eguation
dy= (3t2) otk = gy = (@K Jat

What is t when y = 3? =
@USB nihal condih
t Jion
@ SUbSN‘U\C G'or C \*036r 6":1+jgc nd’ 2‘,-:—3

parbicvlar solulien
\ = Frir 3

@ Solve for + when N> =13
O"’-’\'%’ffl -\—:0




7BEXPONENTIALAMODELS{WITHIDIEFERENTIAIAEQUATIONS

We can use differential | | dy
The general solution of equations of the form It = kyis

equations to model the rate of
change of an exponential
for some constant C.

function! _ | _ |
This can be found using separation of variables. Got it, thanks! ~

fy::C.,e_:;'l"t

In(|f|) = kz +c¢

Jn(lf]) — ghae

f=C-ek’” Let C=€e>0




7BEXPONENTIALAMODELS{WITHIDIEFERENTIAIAEQUATIONS

During one time period, the price of rhodium increased at @ Pﬂc.e & rhode = P

a rate that was proportional to the price of rhodium at

that time. ) ‘ — &-irne Wn m}hs :‘l‘

P _ kP -l
The price for an ounce of rhodium was $475 initially, and m— 5""" :

inq oSN
it quadrupled every 25 months. -.2 Chry solving J
separation Of

_ okt s |
P =Ce S
Let'’s (ind who¥ Cand k are

@ Since P(O=435, Y4I5=Ce’=r 435-C

What was the price for an ounce of rhodium after 18
months?

UJe now hove P-= Lt‘-}ﬁe*"‘ _On\r missins \anoul!
() Since the price t(,uadwples every 25 months, we have:

Price in

BSmo S P(**QS) _.Ll I q-?sek(\*%) ~ g{
Py 15kt -
i i kbv25k-kt_
@ SO. H\e eﬁbmH‘on < o ——-___LI ~ ) e "3 -‘LI

can e repre,senled e e -y D%‘“}j&

T £ = oird
y=1%5¢ ** el es
; Lt
When 18, \l?‘WSeh*@(") =020

)




B0 ONLY/R7/9)L0GISTICMODELS\WITHIDIFFERENTIAEQUATIONS

Logistic population growth i1s when the growth rate increases quickly at first, but then slows
as the population reaches carrying capacity.

Graphs would look something like this:

Limiting value

Gl G G G G G G G @G om

Growth raie is Gecieasing

o
2
k=

=

o,

o
o

Inflection point

Growth rate is increasing ...




B0 ONLY/R7/9)L0GISTICMODELS\WITHIDIFFERENTIAEQUATIONS

Logistic Differential Equation
The derivative of a logistic function is typically written in one of the following forms:

dy Y

or if you manipulate this algebraically you could see it as

dy k

ac - T (L —y)

In either form, k and L are positive constants and L 1s the limiting value.




B0 ONLY/R7/9)L0GISTICMODELS\WITHIDIFFERENTIAEQUATIONS

The number P(t) of people who have heard about a 0 G_e\‘ 'd' n \he pOIm

certain contest after t weeks satisfies the following

logistic differential equation: q—i i \ _ _V.
3= k(- )

Q = ip . (35,000 — P) where L is Yhe Iimn‘Hng (aclor
dt 50 Ccamying Capacity)

Initially, 1000 people have heard about the contest. d

- |
af - 1 JOE
What is the carrying capacity of the population of d ¥ 60 Bam

people who have heard about the contest? L L

Cacloy ovt 3500 25000
is the L

'v '| A ‘Y)




Please leave a comment or send
someone else the resource if
you found this helpful!




