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6.1 Exploring Accumulation
of Change

e The area of the region between the graph of a rate of change function and the
X-axis gives the accumulation of change

e In some cases, accumulation of change (area between curve and x-axis) can

be evaluated using geometry to split it up into simpler shapes and adding up

the area of those shapes

e |f the curve is above the x-axis, the accumulation of change is positive. If the =
curve is below the x-axis, the accumulation of change is negative.
e You can find the unit for accumulation of change (area between curve and x-

axis) by multiplying (unit for rate of change)(unit on the x-axis)
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6.1 Exploring Accumulation

A freight train leaves the station on a 4.5-hour trip. The

graph below shows the train's velocity as a function of
time.
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with Riemann Sums

e Riemann sums: approximations of a definite integral using simple
shapes

o Left Riemann sums: rectangles touch the curve with their top-

left corner

o Right Riemann sums: rectangles touch the curve with their top-
right corner

o Midpoint Riemann sums: rectangles touch the curve with the

point at the midpoint of its base

6.2 Approximating Areas
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o Trapezoidal Rule: Uses trapezoids to get more accurate

dimensions
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6.2 Approximating Areas -
with Riemann Sums

Approximate the area between the x-axis and
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with Riemann Sums

6.2 Approximating Areas

Type of
approximation

Increasing Function

Decreasing Function

Concave Up

Concave Down

Left Riemann

Underestimate

Overestimate

Right Riemann

Overestimate

Underestimate

Midpoint

Underestimate

Overestimate

Trapezoidal

Overestimate

Underestimate




6.3 Riemann Sums, Summation Notation,
and Definite Integral Notation

o As the width of each rectangle in a Riemann sum, gets smaller and smaller, it gets closer to the actual value of the

IO

function (definite integral).
o A definite integral can be translated into the limit of a related Riemann sum, and vice versal!

e The summation notation form of a right Riemann sum is shown below. Using our definition of change in x, we get
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6.3 Riemann Sums, Summation Notation,
and Definite Integral Notation

o As the width of each rectangle in a Riemann sum, gets smaller and smaller, it gets closer to the actual value of the

ORI

function (definite integral).

e The formula for a right Riemann sum is shown below, followed by a left Riemann sum.
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6.3 Riemann Sums, Summation Notation,
and Definite Integral Notation

Which of the definite integrals is equivalent to the K

following limit? ) ) ‘n‘e Y‘\Sh\' Rieman?‘ Sum 3 81'000'!
n . by z F(aridx)Dx

1imzcos(g+;l).“ T e —~— W&d“‘

n—r00 £ n) 2n he“am o m}anta\e, w

0 & \et | most bound and
we slary ot 1=\ SN w€

Choose 1 answer: waen 40 Cﬂ\w\ﬁﬁe t oV }he

® [T . right endpoint, asin 1he€
/U\ COS T arxr ﬁlwwlns 3 gw“\
m/2 N
/ cosx dx &
0 ey,
© 3n/4 Q1A Ax
/ cosx dx cor‘ ins\ance +he Gii‘.sl‘ erd pOih)r
) woud be ot =1, Flasdx)BxThsis
© / cos z dx also w}\\l we stary ot (=0 In left Reermm

£ Mm% gince we dont want to Mo ane AX ol

IO



6.3 Riemann Sums, Summation Notation,
and Definite Integral Notation
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6.4 The Fundamental Theorem of
Calculus Accumulation Funetion

o As the width of each rectangle in a Riemann sum, gets smaller and smaller, it gets closer to the
actual value of the function (definite integral).
o A definite integral can be translated into the limit of a related Riemann sum, and vice versal!

If fis a continuous function on an interval omposite Functions and The Seconc

d . When the upper Iiit of the inegral Is a unction of
Containing a,then — jf(t)dt — f(x), where x rather than x itself: )
g(x
dx | A(x)=[" (1) ar
xIs in the interval. We can use the Second Fundamental Theorem of

Calculus together with the Chain Rule to
differentiate the integral:

1 ()it £ (2()- (1)
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6.4 The Fundamental Theorem of

(] )
Calculus Accumulation Funetion
The graph of function g is shown below. Let
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6.5 Interpreting the Behavior of
Accumulation Functions Involving Area

 We can use the first and second derivatives of accumulation
functions of the form F(x) = fxf(t) dt  toanalyze a function’s
a
concavity, maximums/minimums, and points of inflection just like a
normal function!

o Usethe FTC
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6.5 Interpreting the Behavior of
Accumulation Functions Involving Area

Since CK) s negallve, g'bd \Snegafive

S0 Qs otecmsma.
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6.6 Applying Properties of Delinite

IO

Integrals

b b b
Sum/Difference:/ f(z) £ g(:s)}da:/ f(z)dz / g(x)dz
b b

Constant multiple:/ k- f(z)dx = k/ f(z)dz

b a
Reverseinterval:f f(z)dx = /z;. f(z)dz

@ b c c
Zero-length interval: / f(z)dr =0 Adding intervals: / f(z)dz + /b f(z)dz = / f(z)dz



6.6 Applying Properties of Delinite
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Integrals

3
2

/_ (=) + g(=) dz = The graph of g is comprised of a semi-circle and line
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6.7 The Fundamental Theorem of
Calculus and Definite Integrals

e An integral is the antiderivative of the function

o An antiderivative of a function f{x) is a function F(x) whose derivative is f(x)

* If afunction fis continuous on an interval Power Rule
containing a, the function defined by Derivatives Integrals
X ;

F(x)= j f(t)dt is an antiderivative of ffor x Sl s s

' . e 2) Subtract 1 from exponent 2) Divide by new exponent

in the interval. ~
y ="a" y = z"

First Fundamental Theorem of Calculus W _ g ‘/W = &

dz _ wxl Tt @

Given fis
« continuous on interval [a, b]
« Fis any function that satisfies F’(x) = f(x)

Then A
j f(x)dx=F(b)-F(a)
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6.7 The Fundamental Theorem of
Calculus and Definite Integrals
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F(z)=vz+7

a 9
L H(x) dlx = S,z F'(0dy = F)ld by FTC
f(z) = F'(x) = F(Q) - F(2)
/:f(w)d:r: =Jl6-8-4-3=|



6.8 Finding Antiderivatives and Indefinite

Integrals: Basic Rules and Notation

e If you are not given bounds (as in an antiderivative), you must include a
+C to represent a constant

« Remember how constants go away when we take a derivative? By
adding +C, we're accounting for the constant that could've been taken
away.

e Here are some formulas for antiderivatives of trig functions:

o Remember: An antiderivative of a function f(x) is a function F(x)
whose derivative is f(x)
e You can check if the antiderivative is right by differentiating it and seeing

if it matches what you had at first!
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Derivatives or
Differentiation Formulas

Antiderivatives or
Integration Formulas

dr. [ e — el

f[ﬂﬂ _T]:CDS x JCDS xdxr=sinx+C

ax

d : . g ]
—|cosx|=—sinx | sin XX cosx+
ax '

dar . [ sec? xdx=tanx+ C
—|tan x| =sec” x ] xei: _

ax

dr § ] o ]
— [sec x| =secxtan x | sec xtan xdx=secx+C
ax

ﬂl‘ B - 1 3 - 'F:_ .
—|cotx|=—csc x | esc X0 cotx+C
ax

dr ¥ ] . )
—|cscx| =—cscxcot x ] CcsC xcot xax cscx+
ax




6.8 Finding Antiderivatives and Indefinite =
Q

Integrals: Basic Rules and Notation




6.9 Integrating Using Substitution

e U-substitution in integration is similar to the chain rule in differentiation (it is

sort of like the reverse!)
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6.10 Integrating Functions Using Long
Division and Completing the Square

Long Division

3x 4

2x+5)/+7x 20
Bx?% - 15x

1. Divide
2. Multiply
3. Subtract

How to Complete the square

f, v=x*+bx+c

Substitute b and c below to complete the square

IO

Rearrange the polynomials into equivalent forms to make them easier to integrate!!!



6.10 Integrating Functions Using Long

Division and Completing the Square
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6.11 Integrating Using Integration by
Parts (BC ONLY)

Antiderivative f dV = |V — J, Vdu
(indefinite integral)

h b
o o o Ib
Definite integrals /udv = UV — /’U du
a

T
i
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6.12 Integrating Using Linear Partial
Fraction Decomposition (BC ONLY)

1. Factor the denominator into linear factors (highest power of x has to be 1)

2x%—7
Evaluate [ ———— d\x/_’ X°-3x -5z % (X-3x-4) = X(x-K)(x+1)

2. Make each factor the denominator to a new fraction with A, B, C ... so on as
placeholders in the numerator. Add all these new fractions up and equal them to

the old fraction as in this example:

Ax-F _2%-73 A, 6 | C
X333 4x  x(x-d)x) X X4 x+
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6.12 Integrating Using Linear Partial
Fraction Decomposition (BC ONLY)

3. Multiply both sides by all the factors of the denominator of the original fraction. This should
get rid of the denominator of the original fraction.
(x(-) (x \-l))(__q_’.‘::l_):(_@_ .B_, _S_)(X( x4 (x+1))
x(x-4)(x+)) \ X X4 XH
A -1 A "‘"‘q)(**‘) B (X)(x4) +( (JO(X““')

4. Equal each of the linear factors to zero and then plug in each x value. This should give you

the value of each placeholder (continued on next page).

Xx-4=0 x+1=0 x=0
X=4 X~
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6.12 Integrating Using Linear Partial
Fraction Decomposition (BC ONLY)

Lebx =4, 2(40%7= A (-9 1) > BIDH:) + CH)4-Y)
2016)-1= 8 (ums)j 208=25
32-7 = 20B B=2

Let x=-1, 2¢N*-F=AEMEIN -BEDEIH) FCEDE-4)
2-1= 5C
=

Let x=0 2000%1 = A(0-4)(0+1)+BL0(0+) + () (0-4)
}=-4A
A= %
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6.12 Integrating Using Linear Partial
Fraction Decomposition (BC ONLY)

5. Integrate the newly decomposed fractions. Since this decomposed form is

equal to the original, it gives the same result as integrating the OG!

J _?_ﬁ:l— X_= (__1‘1...- 3 i \-‘-—--— X
X 2- 3=\ X x-4 Xl
12 5 (3R)- (5m) o
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6.13 Evaluating Improper Integrals

(BC ONLY)

Improper Integrals

L[ fx)dx = lim| " f(x)dx
2 j f(x)dx = lim j F(x)dx

i — =L

3[ F(x)dx = j f(:f)dwrf F(x)dx

If the limit exists then the improper integral converges.

If the limit does not exists then the improper integral diverges.

Examples:
7y 9x oo ] b ]_
j 4e " dx =lim 4E dx j —dx=lm| —dx
Y 1 X hb—o Wl X
_ b
= lim | 2¢™ ]ﬂ _ EE _]H_T]':
=2 (converges) (diverges)
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6.13 Evaluating Improper Integrals
(BC ONLY)

I | TJ' we tried o plus in Xx=0, Hhe answer
f —= 4 IS undlefined. We use limils ¥o deal with ths.
0 VT

Iim g:_j__!__ - “m (Qﬁll)

+=0 X
= Qr | (O) ¢ direct substitulion
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Thank You




